Inorganic polyphosphate: a possible stimulant of bone formation.

نویسندگان

  • Y Hacchou
  • T Uematsu
  • O Ueda
  • Y Usui
  • S Uematsu
  • M Takahashi
  • T Uchihashi
  • Y Kawazoe
  • T Shiba
  • S Kurihara
  • M Yamaoka
  • K Furusawa
چکیده

Inorganic polyphosphates [Poly(P)] are often distributed in osteoblasts. We undertook the present study to verify the hypothesis that Poly(P) stimulates osteoblasts and facilitates bone formation. The osteoblast-like cell line MC 3T3-E1 was cultured with Poly(P), and gene expression and potential mineralization were evaluated by reverse-transcription polymerase chain-reaction. Alkaline phosphatase activity, von Kossa staining, and resorption pit formation analyses were also determined. The potential role of Poly(P) in bone formation was assessed in a rat alveolar bone regeneration model. Poly(P) induced osteopontin, osteocalcin, collagen 1alpha, and osteoprotegerin expression and increased alkaline phosphatase activity in MC 3T3-E1 cells. Dentin slice pit formation decreased with mouse osteoblast and bone marrow macrophage co-cultivation in the presence of Poly(P). Promotion of alveolar bone regeneration was observed locally in Poly(P)-treated rats. These findings suggest that Poly(P) plays a role in osteoblastic differentiation, activation, and bone mineralization. Thus, local poly(P) delivery may have a therapeutic benefit in periodontal disease.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development and assessment of 153Sm-zoledronate complex as a possible bone pain palliative agent

Introduction:In this work, 153Sm-zoledronate (153Sm-ZLD) was studied using computational chemistry methods and prepared for possible use in bone pain palliation therapy. Methods: The Sm(ZLD)2.7H2O complex was synthesized and characterized in solid state using computational chemistry methods followed by 153...

متن کامل

Control of Vertebrate Skeletal Mineralization by Polyphosphates

BACKGROUND Skeletons are formed in a wide variety of shapes, sizes, and compositions of organic and mineral components. Many invertebrate skeletons are constructed from carbonate or silicate minerals, whereas vertebrate skeletons are instead composed of a calcium phosphate mineral known as apatite. No one yet knows why the dynamic vertebrate skeleton, which is continually rebuilt, repaired, and...

متن کامل

Development and characterization of a biodegradable polyphosphate.

A biodegradable polyphosphate polymer (Mn = 18,000, Mw/Mn = 3.2) matrix system was developed as a potential delivery vehicle for growth factors. As a model system, release of recombinant human osteogenic protein-1 (OP-1) from this polymer was evaluated. The polyphosphate was synthesized using a triethylamine catalyst in an argon environment, and characterized using elemental analysis, gel perme...

متن کامل

Bio-silica and bio-polyphosphate: applications in biomedicine (bone formation).

Bio-silica represents the main mineral component of the sponge skeletal elements (siliceous spicules), while bio-polyphosphate (bio-polyP), a multifunctional polymer existing in microorganisms and animals acts, among others, as reinforcement for pores in cell membranes. These natural inorganic bio-polymers, which can be readily prepared, either by recombinant enzymes (bio-silica and bio-polyP) ...

متن کامل

Neutralizing blood-borne polyphosphate in vivo provides safe thromboprotection

Polyphosphate is an inorganic procoagulant polymer. Here we develop specific inhibitors of polyphosphate and show that this strategy confers thromboprotection in a factor XII-dependent manner. Recombinant Escherichia coli exopolyphosphatase (PPX) specifically degrades polyphosphate, while a PPX variant lacking domains 1 and 2 (PPX_Δ12) binds to the polymer without degrading it. Both PPX and PPX...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of dental research

دوره 86 9  شماره 

صفحات  -

تاریخ انتشار 2007